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Abstract. We prove that if a finitely presented group is one-ended then its
asymptotic dimension is bigger than 1. It follows that a finitely presented
group of asymptotic dimension 1 is virtually free.

1. Introduction

The notion of asymptotic dimension of a metric space was introduced by Gromov
in [5]. It is a large scale analog of topological dimension and it is invariant by quasi-
isometries. This notion has proved relevant in the context of Novikov’s higher
signature conjecture and it was investigated further by other people (see [10], [1],
[8]).

In this paper we show the following:

Theorem 1. If G is a one-ended finitely presented group then G has asymptotic
dimension greater or equal to 2.

Also we deduce as corollary:

Theorem 2. If G is a finitely presented group with asdim G = 1 then G is virtually
free.

For finitely generated groups the statement above doesn’t hold. We give a
counter-example at the end.

After we completed this work T.Januszkiewicz brought to our attention his joint
paper with J.Swiatkowski ([6]) where they proved the same results independently.

Finally I would like to thank pr. P.Papasoglu for his help and guidance during
the writing of this paper.

2. Preliminaries

Metric Spaces. Let (X, d) be a metric space. If A,B are subsets of X we
set d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. A path in X is a map γ : I → X
where I is an interval in R. A path γ joins two points x and y in X if I = [a, b],
γ(a) = x and γ(b) = y. The path γ is called an infinite ray starting from x0 if
I = [0,∞) and γ(0) = x0. A geodesic, a geodesic ray, or a geodesic segment in X,
is an isometry γ : I → X where I is R or [0,∞) or a closed interval in R. We use
the terms geodesic, geodesic ray etc. for the images of γ without discrimination.
On a path-connected space X given two points x, y we define the path metric to
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be ρ(x, y) = inf{length(p)} where the infimum is taken over all paths p that join
x and y. A space is called a geodesic metric space if for every x, y in X there
exists a geodesic segment which joins them. In a geodesic space the path metric
is indeed a metric. A geodesic metric space X is said to be one-ended if for every
bounded K, X−K has exactly one unbounded connected component. We say that
X is uniformly one-ended, if for every n ∈ R+ there is an m ∈ R+ such that for
every K ⊂ X with diam(K) < n, X −K has exactly one connected component of
diameter bigger than m.

Groups. The Cayley graph of G with respect to a generating set S is the 1-
dimensional complex having a vertex for each element of G and an edge joining
vertex x to vertex xs for every vertex x and every s ∈ S . The Cayley graph has a
natural metric which makes it a geodesic metric space, where each edge has length
1 (see [8]). In fact any connected graph can be made geodesic metric space in the
same way.

We will use the same letter G for both the group and its Cayley graph as a
metric space. We also use van - Kampen Diagrams (see [7] chapter V pg 236 -240
and [3]). A van Kampen diagram D for a word w in S representing the identity
element of G, is a finite, planar, contractible, combinatorial 2-complex; its 1-cells
are directed and labeled by generators and the boundary labels of each of its 2-cells
are cyclic conjugates of relators or inverse relators. Further the boundary label for
D is w when read (by convention anticlockwise) from a base point in ∂D. We recall
here that a word w represents the identity element of G if and only if the path in
the Cayley graph labeled by w is closed.

There is a natural map f from the 1-skeleton D(1) of D to the Cayley graph of
G. f sends the base point to a vertex v of the Cayley graph and edges of D(1) to
edges of the Cayley graph with the same label. Obviously f is determined by the
image of the base point, v. f is not necessarily injective. If we consider D(1) as
a geodesic metric space giving each edge length 1 then d(x, y) ≥ d(f(x), f(y)) for
every x, y in D(1).

Finally we say that a group G is virtually free if there exists a finite index
subgroup H of G which is a free group.

A group G is called free-by-infinite if it contains a normal subgroup N of finite
index such that N is free.

Generally if X is a property of groups then we say that G is virtually X if
∃H <f G and H has property X. We say that G is X-by-infinite if ∃N Cf G
normal such that N has property X.

Obviously if G is X-by-infinite then G is virtually X. The converce also holds if
the property X is inherited to subgroups.

Now since if G is free every subgroup of G is free we have that G is virtually free
if and only if G is free by-infinite.

Asymptotic Dimension. A metric space Y is said to be d - disconnected or
that it has dimension 0 on the d - scale if there exist Bi ⊂ Y such that:

Y =
⋃

i∈I

Bi

with sup{diamBi, i ∈ I} ≤ D < ∞, d(Bi, Bj) ≥ d ∀ i 6= j.
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Definition. (Asymptotic Dimension 1) We say that a space X has asymptotic
dimension n if n is the minimal number such that for every d > 0 we have:
X =

⋃
Xk for k = 1, 2, ..., n and all Xk are d-disconnected. We then write

asdimX = n.

We say that a covering {Bi} of X has d - multiplicity k, if and only if every
d-ball B(x, d) in X meets no more than k sets Bi of the covering. A covering
has multiplicity n if no more than n + 1 sets of the covering have a non empty
intersection. A covering {Bi}, i ∈ I is D - bounded, if diam(Bi) ≤ D ∀ i ∈ I.

Definition. (Asymptotic Dimension 2) We say that a space X has asdimX = n,
if n is the minimal number such that ∀ d > 0 there exists a D-bounded covering of
X with d - multiplicity ≤ n + 1.

The two definitions used here are the first two definitions Gromov gave in his
paper [5]. It is not difficult to see that the two definitions are equivalent.

3. Main Theorem

Before we get to the main theorem we will prove two lemmas that we will need
below.

Lemma 1. Let G be a finitely generated, infinite group then asdim G > 0.

Proof. Let asdim G = 0 and fix d > 0. Then according to the first definition we
have that G = X1 were X1 =

⋃
Bi with:

(1) diamBi ≤ D, ∀ i ∈ I
(2) d(Bi, Bj) ≥ d, ∀ i 6= j.

That means that G is d-disconnected. Since G is a connected graph it follows that
we can not have two distinct Bi’s. So G ⊂ B1 which means that G is D-bounded.
But since G is finitely generated we have immediately that G is finite which is a
contradiction. ¤
Lemma 2. If G is an one-ended finitelly presented group then G contains a bi-
infinite geodesic.

Proof. Let fix x0 the vertex that corresponds to the identity element in the Cayley
graph of the group. Since G is infinite and connected, for every n ∈ N there exists
a vertex xn with distance n from e. We denote by Gn all the geodesics from e to
xn. Then define X =

⋃
Gn. Obivously X is an infinite set. Thus there exists an

edge that starts from x0 let it be e1 such that infinite geodesics pass from that e1.
Let x1 be the other end of e1 then there exists an e2 that starts from x1 such that
infinite geodesics pass through e2. We continue this way and we get an infinite
geodesic. Remark that this infinite ray is not the only one but the procedure gives
as at least one.

So we have obtained one infinite ray r. Since we are working with the Cayley
graph of the group for every n ∈ N there exists an element of G, lets denote it hn,
such that hn · rn = x0 namely hn takes the n − th vertex of r to the x0 and ‖hn‖
is the least possible. Lets denote by hn · r the path that we take if we apply the
element hn to every vertex of r. Then since our metric is G - invariant we have
that all hn · r are infinite geodesics rays starting from hh · x0 respectively. Lets
denote by Y all of these geodesics. Obviously Y is infinite, thus becides e1 there
exists another edge e′1, starting from x0 such that infinite geodesic rays of Y pass
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from e′1. Let x′1 be the other edge of e′1 then there exists an edge e′2 that starts
from x′1 such that infinite geodesics pass through e′2. We continue this way and we
get an infinite path, streching towards the other side. We use that and we have our
bi-infinite geodesic. ¤

Theorem 1. If G is an one-ended finitely presented group then asdim G ≥ 2.

Proof. By lemma 1 and since G is one-ended we have that G is infinite and thus
asdim G > 0 We will show that asdim G 6= 1. Let’s suppose that asdim G = 1.

Let M = max{|ri|, i = 1, 2, ..., n: ri relation of G}, where |r| = length of the
word r. We fix d > 100M + 100. Since asdim G = 1 there is a covering B = {Bi}
with:

G =
⋃

i∈I

Bi

and diamBi < D, ∀ i ∈ I, such that every ball B(x, d) intersects at most 2 sets of
the covering B. We may assume without loss of generality that if r is a path in the
Cayley graph labeled by a relator ri then r is contained in some Bj ∈ B.

Since G is one-ended we have that G has a bi-infinite geodesic S(Lemma 2).
Let N = max{100D100, 300M}. Choose an x0 ∈ S and consider the ball B(x0, N)
which separates the geodesic S into two geodesic rays S1 and S2. Since G is one-
ended there is an x in S1, a y in S2 and a path p with p(0) = x and p(t) = y such
that p

⋂
B(x0, N) = ∅.

We denote by [x, y] the part of the geodesic S, that connects x and y. Obviously
length([x, y]) ≥ 2N . We denote by w the path that corresponds to [x, y]

⋃
p

We have then that

length(w) = length([x, y]) + length(p) ⇒ length(w) > 200D

So in order to cover the path w we need at least 3 sets of the covering {Bi}.
We consider now the van-Kampen diagram D that corresponds to the path w and
the function f from D(1) to the Cayley graph G. So f(∂D) = w. For notational
convenience we label vertices and edges of ∂D in the same way as w. So for example
we denote the vertex on ∂D which is mapped to x0 ∈ w by f also by x0.

Let B be a set of the covering that intersects [x, y]. We consider f−1(B). Let
C(B) be the union of all 2-cells of D which have the property that their boundary
is contained in f−1(B). Let U be the collection of all such sets B with the following
property: For some connected component, K, of C(B), [x, y] ∩K is contained in
an interval [a, b] with a, b ∈ K such that x0 ∈ [a, b]. Let d(K) = d(a, b) for such
a component and let d(B) be the maximal value of all d(K) for K component of
C(B) such that x0 ∈ [a, b]. Let B1 be a set in U for which d(B1) is maximal.
Let K1 be the connected component of C(B1) for which d(K1) = d(B1). Let’s say
that K1 ∩ [x, y] is contained in [a1, b1] with a1, b1 ∈ K1. Let e be the edge of [x, y]
adjacent to a1 which does not lie in [a, b]. If r is the 2-cell containing e there is
some B2 ∈ B such that C(B2) contains r.

Let C be the subset of D which contains all 2-cells with boundary contained in
f−1(B1

⋃
B2). Since d(x0, p) ≥ N , C does not intersect p. Thus D − C 6= ∅. Let

K be the connected component of C which contains x0.
Let P = D−K

⋂
K. P is connected since K is connected. Each edge of

P is contained in two 2-cells. One of these 2-cells lies in f−1(B1

⋃
B2) and one

does not lie in this set. It is not possible that all edges of P are contained in a
2-cell of f−1(B2). Indeed in this case we would have d(B2) > d(B1), which is
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impossible. Since r is contained in C(B2) some edge of P is not contained in a
2-cell of f−1(B1). It follows that there are 2 adjacent edges e1, e2 in P such that
one of them is contained in a 2-cell of f−1(B1) and the other in a 2-cell of f−1(B2).
If c is the 2-cell that contains e1 and is not in f−1(B1

⋃
B2) then c lies in a set

f−1(B3) with B3 ∈ B and B3 6= B1, B2. The edges e1, e2 and the 2-cell c have a
vertex v in common. So v ∈ f−1(B1 ∩B2 ∩B3). It follows that B1 ∩B2 ∩B3 6= ∅,
a contradiction.

This concludes the proof. ¤

Remark. The result above holds also for uniformly one-ended simply connected
simplicial complexes. So if X is a uniformly one-ended simply connected simplicial
complex then asdimX ≥ 2.

One can prove this in a similar way and we give a sketch here: Since X is one-
ended then X has geodesic segments [an, bn] of length n for every n ∈ N. Using
these segments and the fact that X is uniformly one ended we can construct a
closed path in X like the path w in the previous proof. Finally since X is simply
connected there is a map f : D → X with f(∂D) = w, where D is a disc. We may
further assume that f is simplicial by the simplicial approximation theorem. So
this disc D replaces the van-Kampen diagram D is the previous proof.

Of course the result does not hold for one-ended simply connected simplicial
complexes, a half-line gives a counterexample. We remark finally that if a Cayley
graph is one ended then it is uniformly one ended.

We note that the following theorem holds:

Theorem. (Dunwoody-Stallings [2]) If G is a finitely presented group then G is
the fundamental group of a graph of groups such that all the edge groups are finite
and all the vertex groups are 0 or 1 ended.

Also it is known that:

Lemma 3. If all the vertex groups are 0-ended (i.e. finite) then G is virtually free
(see [9], page 120, prop.11).

Furthermore it is not difficult to prove the following lemma (see [4]):

Lemma 4. If H < G and H is finitely generated then asdimG ≥ asdim H.

Using the lemma above and theorem 1 we have the stronger result:

Theorem 2. If G is a finitely presented group with asdim G = 1 then G is virtually
free.

Proof. Let G be a finitely presented group with asdim G = 1. Let Γ be the graph of
groups of the Dunwoody-Stallings theorem. If a vertex group H is one-ended then
from the theorem 1, asdim H ≥ 2. But H < G which means that asdim G ≥ 2
which is a contradiction. So all vertex groups are 0-ended. It follows that G is
virtually free. ¤

Now we give an example of a finitely generated group which is not finitely pre-
sented, not virtually free and that has asymptotic dimension 1. Namely:

Proposition. Let G = Z2 owrZ the wreath product of Z2 and Z. Then asdim G = 1
and G is not virtually free.
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Proof. Since G = Z2 owr Z there exists a short exact sequence:

0 → (⊕ZZ2) → G → Z→ 0

By the Hurewicz type formula (see [11]) we have:

asdimG ≤ asdimZ+ asdim(⊕ZZ2)

Since every finitely generated subgroup F of (⊕ZZ2) is finite, we have that all F
of that type have asymptotic dimension 0. Following the definition of asymptotic
dimension for arbitrary discrete groups found in [11] we get:

asdim(⊕ZZ2) = sup{asdimF |F < G, finitely generated} = 0

Another way to get the same result is by using the following corollary found in [12]

Corollary. Let G be a countable abelian group. Then asdim G = 0 if and only if
G is torsion.

Obviously ⊕ZZ2 is abelian and torsion so asdim ⊕ZZ2 = 0. Thus we get:

asdim G ≤ 1 + 0 = 1

Since G is a finitely generated infinite group (see [13] for the description of the
generators), by lemma 1 we have that asdim G > 0. So asdim G = 1.

We will prove that G is not virtually free. Let G be virtually free. Then G is
free-by-infinite. So there exists a normal subgroup N of G such that N is free and
the index |G : N | is finite. Recall the exact sequence:

0 → (⊕ZZ2) → G → Z→ 0
and lets denote the image of ⊕ZZ2 in G to be H through the mapping f . Then
obviously H < G and we will prove that N

⋂
H = {e}. That is true since if

x ∈ N
⋂

H we will have that x ∈ H and thus there exists a y in ⊕ZZ2 with
f(y) = x. But since o(y) = 2 or 1 we have that y2 = e in ⊕ZZ2 which gives us that
f(y)2 = e in G, meaning x2 = e in G. But x belongs to N and N is free so we
must have that x = e. Now from the second theorem of isomorphisms and since N
is a normal subgroup of G we have:

H

H
⋃

N
' H ·N

N

but H
⋃

N = {e} and H·N
N < G

N thus we get:

H ' H

H
⋃

N
' H ·N

N
<

G

N

But that leads to a contradiction since H is infinite (f is one to one and ⊕ZZ2 is
infinite ) whereas G

N is finite. This concludes the proof. ¤
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